PID Parameters Optimization Research for Hydro Turbine Governor by an Improved Fuzzy Particle Swarm Optimization Algorithm
نویسندگان
چکیده
Parameter optimization of water turbine regulating system (WTRS) is decisive in providing support for the power quality and stability analysis of power system. In this paper, an improved fuzzy particle swarm optimization (IFPSO) algorithm is proposed and used to solve the optimization problem for WTRS under frequency and load disturbances conditions. The novel algorithm which is based on the standard particle swarm optimization (PSO) algorithm can speed up the convergence speed and improve convergence precision with combination of the fuzzy control thought and the crossover thought in genetic algorithm (GA). The fuzzy control is employed to get better dynamics of balance between global and local search capabilities, and the crossover operator is introduced to enhance the diversity of particles. Two different types of WTRS systems are built and analyzed in the simulation experiments. Furthermore, the sum of regulating time and another number that is the integral of sum for absolute value of system error and the squared governor output signal is considered as the fitness function of this algorithm. The simulation experiments for parameter optimization problem of WTRS system are carried out to confirm the validity and superiority of the proposed IFPSO, as compared to standard PSO, Ziegler Nichols (ZN) algorithm and fuzzy PID algorithm in terms of parameter optimization accuracy and convergence speed. The simulation results reveal that IFPSO significantly improves the dynamic performance of system under all of the running conditions.
منابع مشابه
A new design for PID controller by considering the operating points changes in Hydro-Turbine Connected to the equivalent network by using Invasive Weed Optimization (IWO) Algorithm
This paper presents a new optimization algorithm to design an optimal proportional, integral, derivative (PID) controller in hydro-turbine generator governor for damping output frequency oscillations. In this research, we utilize a stochastic and optimal based PID controller to control frequency-response of the hydro turbine. The proposed algorithm is employed to design an optimal PID controlle...
متن کاملOptimum Control of Hydro-Turbine Connected to the equivalent network for Damping Frequency Oscillation Using Invasive Weed Optimization (IWO) Algorithm
In this paper, an artificial-based optimizes and analysis of an optimal proportional, integral, derivative (PID) controller is introduced for a hydro-turbine generator governor. The main purpose, optimization PID controller parameters of hydro-turbine connected to the network for damping output frequency oscillation. In The proposed approach, an optimal and evolutionary based proportional, inte...
متن کاملA new design for PID controller by considering the operating points changes in Hydro-Turbine Connected to the equivalent network by using Invasive Weed Optimization (IWO) Algorithm
This paper presents a new optimization algorithm to design an optimal proportional, integral, derivative (PID) controller in hydro-turbine generator governor for damping output frequency oscillations. In this research, we utilize a stochastic and optimal based PID controller to control frequency-response of the hydro turbine. The proposed algorithm is employed to design an optimal PID controlle...
متن کاملOptimizing the AGC system of a three-unequal-area hydrothermal system based on evolutionary algorithms
This paper focuses on expanding and evaluating an automatic generation control (AGC) system of a hydrothermal system by modelling the appropriate generation rate constraints to operate practically in an economic manner. The hydro area is considered with an electric governor and the thermal area is modelled with a reheat turbine. Furthermore, the integral controllers and electri...
متن کاملRobust Control of Power System Stabilizer Using World Cup Optimization Algorithm
In this paper, we propose a new optimized PID controller to stabilize the synchronous machine connected to an infinite bus. The model for the synchronous machine is 4-ordered linear Philips-Heffron synchronous machine. In this research, the parameters of the PID controller are optimally achieved by minimizing a definite fitness function to removes the unstable Eigen-value to the left side of im...
متن کامل